

General Certificate of Education

Mathematics 6360

MM03 Mechanics 3

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and ab	breviations used in marking
---------------------------	-----------------------------

Μ	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
А	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks and is for method and accuracy						
Е	mark is for explanation						
$\sqrt{100}$ or ft or F	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	ct answer only MR mis-read					
CSO	correct solution only RA required accuracy						
AWFW	anything which falls within FW further work						
AWRT	anything which rounds to ISW ignore subsequent work						
ACF	any correct form FIW from incorrect work						
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks NOS not on scheme						
–x EE	deduct x marks for each error G graph						
NMS	no method shown c candidate						
PI	possibly implied sf significant figure(s)						
SCA	substantially correct approach dp decimal place(s)						

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

PMT

QSolutionMarksTotalComments1 $L = M^{\alpha} (LT^{-1})^{\beta} (LT^{-2})^{\gamma}$ M1A1Getting three equations $\beta + \gamma = 1$ $-\beta - 2\gamma = 0$ $\alpha = 0$ m1Getting three equations $\gamma = -1$ $\beta = 2$ m1 A1FSolution $\gamma = -1$ $\beta = 2$ M1 $A1F$ Solution $\gamma = -\frac{1}{2}g(\frac{x}{2})^2 + 10t$ M1 1 $t = \frac{x}{2}$ M1 $y = -\frac{1}{2}g(\frac{x}{2})^2 + 10(\frac{x}{2})$ $y = -\frac{1}{2}g(\frac{x}{2})^2 + 10(\frac{x}{2})$ $y = -\frac{1}{2}g(\frac{x}{2})^2 + 10(\frac{x}{2})$ m1 $y = -\frac{g}{8}x^2 + 5x$ A14AG(b) $1 = -\frac{g}{8}x^2 + 5x$ M1 $2g$ $x = 3.871, 0.211$ A1 A1 A1 $\lambda 1$ for both answers $\lambda 1$ for both answers	<u>MM03</u>				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Q	Solution	Marks	Total	Comments
$\begin{vmatrix} \beta + \gamma = 1 \\ -\beta - 2\gamma = 0 \\ \alpha = 0 \\ y = -1 \\ \beta = 2 \\ y = -\frac{1}{\beta = 2} \\ z = 0 \\ y = -\frac{1}{\beta = 2} \\ z = 0 \\ z$	1	$L = M^{\alpha} (LT^{-1})^{\beta} (LT^{-2})^{\gamma}$	M1A1		
$\begin{vmatrix} \beta + \gamma = 1 \\ -\beta - 2\gamma = 0 \\ \alpha = 0 \\ y = -1 \\ \beta = 2 \\ \hline \\ B = 2 \\ \hline \\ B = 2 \\ \hline \\ C(a) \\ x = 2t \\ y = -\frac{1}{2}gt^{2} + 10t \\ t = \frac{x}{2} \\ y = -\frac{1}{2}g\left(\frac{x}{2}\right)^{2} + 10\left(\frac{x}{2}\right) \\ x = -\frac{1}{2}g\left(\frac{x}{2}\right)^{$					
$\begin{vmatrix} -\beta - 2\gamma = 0 \\ \alpha = 0 \\ \gamma = -1 \\ \beta = 2 \\ \hline \\ \hline \\ \hline \\ \hline \\ g = 2 \\ \hline \\$		$\beta + \gamma = 1$			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$-\beta - 2\gamma = 0$			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\alpha = 0$	m1		Getting three equations
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$p=2$ Alf 3 Total 5 $z(a)$ $x=2t$ M1 $y = -\frac{1}{2}gt^2 + 10t$ M1 M1 $t = \frac{x}{2}$ m1 M1 $y = -\frac{1}{2}g\left(\frac{x}{2}\right)^2 + 10\left(\frac{x}{2}\right)$ m1 Alf AG (b) $1 = -\frac{g}{8}x^2 + 5x$ M1 M1 AG $x = \frac{40 \pm \sqrt{(-40)^2 - 4 \times 8g}}{2g}$ M1 Alf AI		$\gamma = -1$ $\beta = 2$	ml	5	Solution
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		p = 2	AIF	5	
$\begin{aligned} z(\mathbf{a}) & x = 2t & \text{MI} \\ y = -\frac{1}{2}gt^{2} + 10t & \text{MI} \\ t = \frac{x}{2} & \text{MI} \\ y = -\frac{1}{2}g\left(\frac{x}{2}\right)^{2} + 10\left(\frac{x}{2}\right) & \text{mI} \\ y = -\frac{g}{8}x^{2} + 5x & \text{AI} & \text{AI} \\ y = -\frac{g}{8}x^{2} + 5x & \text{MI} \\ gx^{2} - 40x + 8 = 0 & \text{MI} \\ x = \frac{40 \pm \sqrt{(-40)^{2} - 4 \times 8g}}{2g} & \text{MI} \\ x = 3.871, \ 0.211 & \text{AI} & \text{AI} \\ \text{Distance} = 3.66 & \text{MI} \\ \end{aligned}$	2(-)	lotal	M 1	3	
$y = -\frac{1}{2}gt^{2} + 10t$ $t = \frac{x}{2}$ $y = -\frac{1}{2}g\left(\frac{x}{2}\right)^{2} + 10\left(\frac{x}{2}\right)$ m1 $y = -\frac{g}{8}x^{2} + 5x$ A1 A A A G M I $1 = -\frac{g}{8}x^{2} + 5x$ MI $gx^{2} - 40x + 8 = 0$ $x = \frac{40 \pm \sqrt{(-40)^{2} - 4 \times 8g}}{2g}$ MI $x = 3.871, 0.211$ Distance = 3.66 m A1 A A A I A I A I A I A I A I A I A I	2(a)	x = 2t	IVI I		
$t = \frac{x}{2}$ $y = -\frac{1}{2}g\left(\frac{x}{2}\right)^{2} + 10\left(\frac{x}{2}\right)$ $y = -\frac{g}{8}x^{2} + 5x$ (b) $1 = -\frac{g}{8}x^{2} + 5x$ $y = -\frac{g}{8}x^{2} + 5x$ (c) $1 = -\frac{g}{8}x^{$		$y = -\frac{1}{2}gt^2 + 10t$	M1		
$t = \frac{x}{2}$ $y = -\frac{1}{2}g\left(\frac{x}{2}\right)^{2} + 10\left(\frac{x}{2}\right)$ $y = -\frac{g}{8}x^{2} + 5x$ (b) $1 = -\frac{g}{8}x^{2} + 5x$ $gx^{2} - 40x + 8 = 0$ $x = \frac{40 \pm \sqrt{(-40)^{2} - 4 \times 8g}}{2g}$ $x = 3.871, 0.211$ Distance = 3.66 m (c) $t = \frac{3.66}{2}$ (d) $x = \frac{3.66}{2}$ (e) $x = \frac{3.66}{2}$ (f)		2			
$ \begin{array}{ c c c c c c } & y = -\frac{1}{2}g\left(\frac{x}{2}\right)^2 + 10\left(\frac{x}{2}\right) & m1 \\ y = -\frac{g}{8}x^2 + 5x & A1 & A \\ (b) & 1 = -\frac{g}{8}x^2 + 5x & M1 \\ gx^2 - 40x + 8 = 0 & M1 \\ x = \frac{40 \pm \sqrt{(-40)^2 - 4 \times 8g}}{2g} & M1 \\ x = 3.871, \ 0.211 & A1 \\ Distance = 3.66 & A1 & A \\ \end{array} $		$t = \frac{x}{2}$			
$y = -\frac{1}{2}g\left(\frac{x}{2}\right) + 10\left(\frac{x}{2}\right)$ $y = -\frac{g}{8}x^{2} + 5x$ (b) $1 = -\frac{g}{8}x^{2} + 5x$ $gx^{2} - 40x + 8 = 0$ $x = \frac{40 \pm \sqrt{(-40)^{2} - 4 \times 8g}}{2g}$ M1 $x = 3.871, 0.211$ Distance = 3.66 m A1		$\frac{1}{1}(r)^2(r)$			
(b) $y = -\frac{g}{8}x^2 + 5x$ $x = -\frac{g}{8}x^2 + 5x$ $y = -\frac{g}{8}x^2 + 5x$ $y = -\frac{g}{8}x^2 + 5x$ $y = -\frac{g}{8}x^2 + 5x$ $y = -\frac{g}{8}x^2 - 40x + 8 = 0$ $x = \frac{40 \pm \sqrt{(-40)^2 - 4 \times 8g}}{2g}$ x = 3.871, 0.211 Distance = 3.66 m M1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A		$y = -\frac{1}{2}g\left(\frac{x}{2}\right) + 10\left(\frac{x}{2}\right)$	m1		
(b) $1 = -\frac{g}{8}x^2 + 5x$ $gx^2 - 40x + 8 = 0$ $x = \frac{40 \pm \sqrt{(-40)^2 - 4 \times 8g}}{2g}$ x = 3.871, 0.211 Distance = 3.66 m (a) $t = \frac{3.66}{2}$ (b) $1 = -\frac{g}{8}x^2 + 5x$ M1		$v = -\frac{g}{2}r^2 + 5r$	Δ 1	1	AG
(b) $1 = -\frac{g}{8}x^2 + 5x$ $gx^2 - 40x + 8 = 0$ $x = \frac{40 \pm \sqrt{(-40)^2 - 4 \times 8g}}{2g}$ x = 3.871, 0.211 Distance = 3.66 m (a) $t = \frac{3.66}{2}$ M1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A		y = 8 x + 5x	211	-	
(b) $1 = -\frac{8}{8}x^2 + 5x$ $gx^2 - 40x + 8 = 0$ $x = \frac{40 \pm \sqrt{(-40)^2 - 4 \times 8g}}{2g}$ x = 3.871, 0.211 Distance = 3.66 m (a) $t = \frac{3.66}{2}$ (b) $t = \frac{3.66}{2}$ (c) $t = \frac{3.66}{2}$		σ			
$gx^{2} - 40x + 8 = 0$ $x = \frac{40 \pm \sqrt{(-40)^{2} - 4 \times 8g}}{2g}$ M1 $x = 3.871, 0.211$ Distance = 3.66 m A1 A1 A1 A1 A1 for both answers A1	(b)	$1 = -\frac{8}{8}x^2 + 5x$	M1		
$x = \frac{40 \pm \sqrt{(-40)^2 - 4 \times 8g}}{2g}$ $x = 3.871, 0.211$ Distance = 3.66 m M1 A1		$gx^2 - 40x + 8 = 0$			
$x = \frac{40 \pm \sqrt{(-40)^2 - 4 \times 8g}}{2g}$ M1 A1 A1 A1 A1 A1 A1 A1 A1 for both answers A1		$40 \pm \sqrt{(40)^2 + 4 \times 8 \pi}$			
$\begin{bmatrix} 2g \\ x = 3.871, 0.211 \\ \text{Distance} = 3.66 \\ \text{M} \end{bmatrix}$ A1 A1 A1 A1 A1 for both answers A1		$x = \frac{40 \pm \sqrt{(-40)^2 - 4 \times 8g}}{2}$	M1		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		2g			
Distance = 3.66 m A1 4		$x = 3.871, \ 0.211$	A1		A1 for both answers
(a) $t = 3.66$ [14]		$Distance = 3.66 \mathrm{m}$	A1	4	
$M_{1} = 5.00$		3 66			
(c) $l = \frac{1}{2}$	(c)	$t = \frac{3.00}{2}$	M1		
t = 1.83 sec A1 2		t = 1.83 sec	A1	2	
Total 10		Total		10	

MM03 (cont)

Q	Solution	Marks	Total	Comments
3 (a)	$_{\rm P}v_{\rm F} = \sqrt{4^2 + 2^2}$	M1		
	= 4.47 m s ⁻¹ or $2\sqrt{5} m s^{-1}$ or $\sqrt{20} m s^{-1}$	A1		
	$\theta = \tan^{-1}\frac{2}{4}$	M1		
	$\theta = 26.6^{\circ}$	A1F		
	Bearing $= 40^{\circ} + 180^{\circ} - 26.6^{\circ}$			
	= 193°	A1F	5	
	Alternative:			
	Comp. due west = $4\sin 40^\circ - 2\sin 50^\circ = 1.04 \text{ ms}^{-1}$	(M1)		OE: resolving in two directions
	Comp. due south = $2\cos 50^\circ$ + $4\cos 40^\circ$ = 4.35 ms ⁻¹			, ,
	$_{\rm p}v_{\rm F} = \sqrt{1.04^2 + 4.35^2} = 4.47 {\rm ms^{-1}}$	(A1)		
	$\theta = \tan^{-1} \frac{1.04}{4.35} \text{ or } \tan^{-1} \frac{4.35}{1.04}$	(M1)		
	$\theta = 13.4^{\circ}$ or 76.6°	(A1F)		
	Bearing $= 13.4^{\circ} + 180^{\circ} \text{ or } 270^{\circ} - 76.6^{\circ}$			
	= 193°	(A1F)		
	Alternative:			
	Correct triangle	(M1)		Any orientation
	$_{P}v_{E} = \sqrt{1.04^{2} + 4.35^{2}} = 4.47 \text{ms}^{-1}$	(A1)		
	Rel. Vel. Triangle angle 26.6° or 63.4°	(A1)		
	Bearing	(M1)		
	$= 40^{\circ} + 180^{\circ} - 26.6^{\circ} \text{ or } 63.4^{\circ} + 40^{\circ} + 90^{\circ}$			
	= 193°	(AIF)		
(b)(i)	$v_{\rm F} = v_{\rm P} + {}_{\rm P}v_{\rm F}$			
	$\sin \alpha \sin 40^{\circ}$	N/1 A 1		
	$\boxed{2}$ \equiv $\boxed{4}$	MIAI		
	$\alpha = 18.7^{\circ}$	A1F		
	Bearing = $90^{\circ} + 18.7^{\circ}$	A 1E	4	
	= 109 Alternative:	AIF	4	
	$2\sin 40^\circ = 4\sin \alpha$	(M1)		
	$\alpha = \sin^{-1}\left(\frac{1}{2}\sin 40^\circ\right)$	(A1)		
	$\alpha = 18.7^{\circ}$	(A1F)		
	Bearing = 109°	(A1F)		

MM03 (cont				
Q	Solution	Marks	Total	Comments
3(b)(ii)	$\beta = 180^{\circ} - (140^{\circ} + 18.7^{\circ})$	B1F		
	$= 21.3^{\circ}$			
	$_{\rm P}v_{\rm F}$ _ 4	M1		
	$\frac{1}{\sin 21.3^\circ} = \frac{1}{\sin 140^\circ}$	101 1		
	$_{\rm P}v_{\rm F} = 2.2568{\rm ms^{-1}}$	A1F		
	1500			
	$t = \frac{1000}{2.2568}$			
	= 665 sec	Δ1F	Δ	
	Alternative:		•	o e resolving in two directions
	$_{\rm r}v_{\rm r} = 4\cos 18.7 - 2\cos 40 = 2.2568$	(M1)		
	F. h 10001011 200010 202000	(À2,1,0)		
	$t = \frac{1500}{-665} = 665$ see	(A1E)		
	$i = \frac{1}{2.2568} = 005$ sec	(AIF)		
(iii)	No cross wind, calm lake, instantaneous	B1	1	Any sensible assumption
	change of direction by the patrol boat			
	Total		14	
	4	2.0		
4(a)	$I = \int_{a}^{b} (t^3 + t) dt$	MI		
	0 74			
	$=\left[\frac{1}{t^{4}}+\frac{1}{t^{2}}\right]^{4}$	m1		
	$\begin{bmatrix} 4 & 2 \end{bmatrix}_0$	1111		
	= 72 Ns	A1	3	
(h)	72 = 0.5v - 0.5(0)	M1		Condone $-5(0)$
	y = 144		2	
	V = 144	AIF	Z	
	T			
(c)	$\int (t^3 + t) dt = 0.5(12) - 0.5(0)$	M1		Condone $-5(0)$
	$\begin{bmatrix} 1 & 1 & 2 \end{bmatrix}^T$			
	$\left \frac{-t^{+} + -t^{2}}{4} \right _{0} = 6$			
	$T^{4} + 2T^{2} = 24$	Δ 1		
	1 + 21 - 24 = 0	AI		
	$T^22 \pm \sqrt{2^2 - 4(1)(-24)}$			
	$1 - \frac{2(1)}{2(1)}$			
	$2T(T^2 - 4)(T^2 + 6) = 0$	AIF		
	0I(I - 4)(I + 6) = 0			
	$T^2 = 4$		-	
	T=2	AlF	5	
	Total		10	

	/ 		-	~
Q	Solution	Marks	Total	Comments
5(a)	Momentum of <i>B</i> perpendicular to the			
	line of centres is unchanged			
	$m_B v \sin 40^\circ = 3m_B$	M1A1		
	$v = 4.667 \text{ m s}^{-1} = 4.67 \text{ ms}^{-1} (3 \text{ sf})$	A1	3	AG
	$4.67\cos 40^\circ$			
(b)	$e = \frac{1}{5\cos 30^\circ}$	MIAI		
	e = 0.826	A1F	3	
			5	
(c)	Impulse on $A =$ change in momentum of			
(*)	A along the line of centres			
	$= 0.5 \times 5 \cos^2 30^\circ = 2.165$	M1 A 1		
	$-0.5 \times 500850 = 2.105$		2	
	= 2.17 NS	AI	3	AG
	$21(5 \dots (4 ((7) + 40)))$			
(d)	$2.105 = m_B(4.06/)\cos 40^\circ$	M1A1	_	
	$m_B = 0.6056 = 0.606 \text{ kg} (3 \text{ sf})$	A1F	3	Condone use of premature rounding giving
			1.	0.605kg or 0.607 kg
	Total		12	
6(9)	$5mu + 7mu = mv_A + 7mv_B$	M1A1		Allow consistent use of positive or
U(a)		1411711		negative sign for v_A .
	$12u = v_A + 7v_B$			
	A = D			
	$e = \frac{-v_A + v_B}{A}$	M1		
	40			
	$-v_A + v_B \equiv 4eu$			
	$8v_B = 12u + 4eu$	m1		
	$v_{a} = \frac{u}{a}(a+3)$	A 1	5	AG
	$V_B = \frac{1}{2}(e+3)$	AI	5	AO
	$u = \frac{u}{(a+2)}$ for	MI		
(0)	$V_A = \frac{-(e+3) - 4eu}{2}$	IVI I		
	$u_{(2)}$			
	$v_A = \frac{-(3 - 1e)}{2}$	AIF		
	 И			
	$\frac{1}{2}(3-7e) < 0$	M1		
	$\frac{2}{3-7e} < 0$			
	3			
	$e > \frac{5}{7}$	A1	4	AG
	1			
(c)	$w_B = \frac{u}{4}(e+3)$	M1		
	4			
	$\frac{u}{2}(7e-3) < \frac{u}{2}(e+3)$	M1		
	2 4			
	2(7e-3) < e+3			
	13 <i>e</i> < 9	m1		
	9	Δ1	Λ	AG
		AI	4	
	Total		13	

<u>MM03 (cont</u>	MM03 (cont)					
Q	Solution	Marks	Total	Comments		
7(a)	$y = 10t \sin 40^\circ - \frac{1}{2}gt^2 \cos 30^\circ$	M1A1				
	$y=0 \implies t = \frac{20\sin 40^\circ}{g\cos 30^\circ}$	A1	3	AG		
(b)	$\dot{x} = 10\cos 40^\circ + g\sin 30^\circ \left(\frac{20\sin 40^\circ}{g\cos 30^\circ}\right)$	M1				
	$\dot{x} = 15.08 \text{ m s}^{-1}$	A1				
	$\dot{y} = 10\sin 40^\circ - g\cos 30^\circ \left(\frac{20\sin 40^\circ}{g\cos 30^\circ}\right)$	M1				
	$\dot{y} = -6.427 \text{ ms}^{-1}$	A1	4	Allow 3 sf		
(c)	\dot{x} will be unchanged	B1				
	Rebound $\dot{y} = 6.427 \times 0.5 = 3.214$	M1		Allow using 3 sf		
	Rebound speed = $\sqrt{15.08^2 + 3.214^2}$	m1				
	$=15.4 \text{ ms}^{-1}$	A1F	4			
	Total		11			
	TOTAL		75			